Powerhouses in the cell dismantled (10/16/2009

All of life is founded on the interactions of millions of proteins. These are the building blocks for cells and form the molecular mechanisms of life. The problem is that proteins are extremely difficult to study, particularly because there are so many of them and they appear in all sizes and weights. Now, Kris Gevaert from VIB/Ghent University and colleagues from the universities of Freiburg and Bochum have achieved a breakthrough in protein research. Using yeast, they have succeeded in making virtually the complete inventory of all the proteins in the mitochondria, the energy producers found in every cell. Their research findings are being published in Cell, the most prestigious professional journal in the life sciences field

During their research, the scientists encountered the Icp55 enzyme, which fulfills an important role in the stabilization of the proteins in the mitochondria. Until now, it was unclear just how the cell accomplished this. Icp55 turns out to be a molecular pair of scissors that snips off one of the ends of certain proteins, so that these proteins are transformed from an unstable to a stable form

"This is a crucial step for fundamental research on proteins, the building blocks of life," says Kris Gevaert, VIB researcher at Ghent University. "It's the first time that such a precise protein determination of the mitochondria has been achieved. Our breakthrough was made possible by COFRADIC, a technology that enables us to analyze protein mixtures much more sensitively and accurately

"We're now able to detect protein forms that were simply overlooked before," Kris Gevaert continues. "So we're receiving requests for scientific collaborations from all over the world

COFRADIC is a technology developed by VIB/Ghent University researchers Joël Vandekerckhove and Kris Gevaert. With COFRADIC, the traditional conception of protein identification has been turned upside-down. Instead of first separating the intact proteins, the entire protein mixture is cut into small pieces (peptides) − which are more soluble and much easier to separate in order to conduct further analyses. Applying this approach to the samples provided by the German scientists revealed a new protein (Icp55) − which proved to be key in explaining protein stabilization in mitochondria, a mystery that has been unsolved up to now

Note: This story has been adapted from a news release issued by the VIB (the Flanders Institute for Biotechnology

Small ... smaller ... smallest? Researchers create molecular diode (10/16/2009

Recently, at Arizona State University's Biodesign Institute, N.J. Tao and collaborators have found a way to make a key electrical component on a phenomenally tiny scale. Their single-molecule diode is described in this week's online edition of Nature Chemistry

In the electronics world, diodes are a versatile and ubiquitous component. Appearing in many shapes and sizes, they are used in an endless array of devices and are essential ingredients for the semiconductor industry. Making components including diodes smaller, cheaper, faster and more efficient has been the holy grail of an exploding electronics field, now probing the nanoscale realm

Smaller size means cheaper cost and better performance for electronic devices. The first generation computer CPU used a few thousand transistors, Tao says noting the steep advance of silicon technology. "Now even simple, cheap computers use millions of transistors on a single chip

But lately, the task of miniaturization has gotten much harder, and the famous dictum known as Moore's law-which states that the number of silicon-based transistors on a chip doubles every 18-24 months-will eventually reach its physical limits. "Transistor size is reaching a few tens of nanometers, only about 20 times larger than a molecule," Tao says. "That's one of the reasons people are excited about this idea of molecular electronics

Diodes are critical components for a broad array of applications, from power conversion equipment, to radios, logic gates, photodetectors and light-emitting devices. In each case, diodes are components that allow current to flow in one direction around an electrical circuit but not the other. For a molecule to perform this feat, Tao explains, it must be physically asymmetric, with one end capable of forming a covalent bond with the negatively charged anode and the other with the positive cathode terminal

The new study compares a symmetric molecule with an asymmetric one, detailing the performance of each in terms of electron transport. "If you have a symmetric molecule, the current goes both ways, much like an ordinary resistor," Tao observes. This is potentially useful, but the diode is a more important (and difficult) component to replicate (Fig 1

The idea of surpassing silicon limits with a molecule-based electronic component has been around awhile. "Theoretical chemists Mark Ratner and Ari Aviram proposed the use of molecules for electronics like diodes back in 1974," Tao says, adding "people around world have been trying to accomplish this for over 30 years

Most efforts to date have involved many molecules, Tao notes, referring to molecular thin films. Only very recently have serious attempts been made to surmount the obstacles to single-molecule designs. One of the challenges is to bridge a single molecule to at least two electrodes supplying current to it. Another challenge involves the proper orientation of the molecule in the device. "We are now able to do this-to build a single molecule device with a well defined orientation," Tao says

The technique developed by Tao's group relies on a property known as AC modulation. "Basically, we apply a little periodically varying mechanical perturbation to the molecule. If there's a molecule bridged across two electrodes, it responds in one way. If there's no molecule, we can tell

The interdisciplinary project involved Professor Luping Yu, at the University of Chicago, who supplied the molecules for study, as well as theoretical collaborator, Professor Ivan Oleynik from the University of South Florida. The team used conjugated molecules, in which atoms are stuck together with alternating single and multiple bonds. Such molecules display large electrical conductivity and have asymmetrical ends capable of spontaneously forming covalent bonds with metal electrodes to create a closed circuit

The project's results raise the prospect of building single molecule diodes - the smallest devices one can ever build. "I think it's exciting because we are able to look at a single molecule and play with it, " Tao says. "We can apply a voltage, a mechanical force, or optical field, measure current and see the response. As quantum physics controls the behaviors of single molecules, this capability allows us to study properties distinct from those of conventional devices

Chemists, physicists, materials researchers, computational experts and engineers all play a central role in the emerging field of nanoelectronics, where a zoo of available molecules with different functions provide the raw material for innovation. Tao is also examining the mechanical properties of molecules, for example, their ability to oscillate. Binding properties between molecules make them attractive candidates for a new generation of chemical sensors. "Personally, I am interested in molecular electronics not because of their potential to duplicate today's silicon applications, " Tao says. Instead, molecular electronics will benefit from unique electronic, mechanical, optical and molecular binding properties that set them apart from conventional semiconductors. This may lead to applications complementing rather than replacing silicon devices

Note: This story has been adapted from a news release issued by the Arizona State University

Micropatterned material surface controls cell orientation (10/15/2009

Cells could be orientated in a controlled way on a micro-patterned surface based upon a delicate material technique, and the orientation could be semi-quantitatively described by some statistical parameters, as suggested by the group of DING from Fudan University, Shanghai, CHINA. The study is reported in Issue 18, Volume 54 (September 2009) of the Chinese Science Bulletin as one of the papers in a special issue about Biomedical Materials in this journal

Cell-material interaction is a very important fundamental topic in natural science, yet is too complex to be revealed without unique research methods. Micropatterning technique, especially photolithography, a widely used technique in microelectronic industry, has recently been employed by material scientists and biologists to generate a surface with cell-adhesion contrast to control cell localization. The present study confirms that cells could be well orientated along a micropattern with cell-adhesive stripes in an adhesion-resistant background
"While cell orientation on a micropattern is not the first observation, our work distinguishes itself by employing a PEG hydrogel instead of a PEG self assembly monolayer as background, and thus the cell adhesion contrast would be maintained for a long time, which guarantees more convenient and convincing observations," noted the corresponding author Jian-dong DING, director of the Key Laboratory of Molecular Engineering of Polymers of the Chinese Ministry of Education and professor of the Department of Macromolecular Science, Fudan University. "This paper further put forward five statistical parameters which describe cell orientation from different aspects

In this paper, the authors prepared, by the photolithographic transfer technique, stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) properties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns. With the increase of inter-stripe distance, the orientational order parameter, the ratio of long and short axes of a cell, and the occupation fraction of cells on stripes increased gradually, whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the five statistical parameters represented well the cell orientation behaviors semi-quantitatively

Note: This story has been adapted from a news release issued by the Science in China Press

Researchers identify mechanism that helps bacteria avoid destruction in cells (10/14/2009

Infectious diseases currently cause about one-third of all human deaths worldwide, more than all forms of cancer combined. Advances in cell biology and microbial genetics have greatly enhanced understanding of the cause and mechanisms of infectious diseases. Researchers from Thomas Jefferson University, the Pasteur Institute in Paris, and Yale University reported in PLoS ONE, a way in which intracellular pathogens exploit the biological attributes of their hosts in order to escape destruction

Intracellular pathogens include Chlamydia, which causes infertility in women, and Legionella, which causes Legionnaire's disease. These pathogens are able to escape destruction and remain in the cells. Until now, it was unclear how they were able avoid the destruction process. The team of researchers, led by Fabienne Paumet, Ph.D., assistant professor of Microbiology and Immunology at Jefferson Medical College of Thomas Jefferson University, found that it appears to be due to SNARE-like proteins expressed by the pathogen

SNARE proteins are necessary for eukaryotic cells to fuse to their intracellular compartments. These proteins, which are present on the surface of almost all intracellular compartments, interact to form a stable complex, triggering fusion of the membranes. Intracellular pathogens, like Chlamydia and Legionella, must contend with vesicular trafficking and membrane fusion in the host cell. But they manage to bypass the lysosome, where other pathogens would normally be destroyed

The researchers tested the hypothesis that SNARE-like proteins expressed by the bacteria themselves were capable to interact with the eukaryotic SNAREs and alter membrane fusion to their advantage. The Chlamydia bacteria expressed a SNARE-like protein called IncA and the Legionella expressed a SNARE-like protein called IcmG/DotF, both of which inhibit SNARE-protein-mediated fusion
"Based on our results, it seems that intracellular bacteria are able to express 'inhibitory SNAREs' to block fusion between the lysosome and the compartment containing the bacteria," Dr. Paumet said. "The SNARE proteins function like a zipper, and without each half, they can't fuse

SNARE-like bacterial proteins would appear to be a viable therapeutic target, since disruption of their protective function should render intracellular bacteria more susceptible to clearance from the phagosome

"Thorough understanding of the bacterial SNARE-like protein system will give us the necessary tools to design such therapeutics," Dr. Paumet said

Note: This story has been adapted from a news release issued by the Thomas Jefferson university

Developing enzymes to clean up pollution by explosives (10/13/2009

Scientists at the University of York have uncovered the structure of an unusual enzyme which can be used to reverse the contamination of land by explosives

The discovery, by scientists in the York Structural Biology Laboratory and the Centre for Novel Agricultural Products, will support the development of plants that can help tackle pollution caused by royal demolition explosive, also known as RDX

Researchers at York have identified bacteria that use RDX as a food source and used that knowledge to develop transgenic plants that can draw pollutants out of the soil and break them down

The latest findings, published in the Journal of Biological Chemistry, focus on the XplA enzyme
which plays an important role in that process
Dr Gideon Grogan, from the York Structural Biology Laboratory, said: "The biological process for tackling the pollution caused by RDX already exists but we need to find ways of making it work faster and on the scale required

"This research significantly improves our understanding of the structure of this enzyme and is therefore an important step towards exploiting its unusual properties

Professor Neil Bruce, from the Centre for Novel Agricultural Products, said: "RDX is toxic and a possible carcinogen so it is important to identify ways of stopping it polluting land and water supplies

"We have already had significant success in engineering plants that can perform this task and this research will help further refine that technique

Note: This story has been adapted from a news release issued by the University of York

Toward better solar cells: Chemists gain control of light-harvesting paths (10/12/2009

University of Florida chemists have pioneered a method to tease out promising molecular structures for capturing energy, a step that could speed the development of more efficient, cheaper solar cells

"This gives us a new way of studying light-matter interactions," said Valeria Kleiman, a UF associate professor of chemistry. "It enables us to study not just how the molecule reacts, but actually to change how it reacts, so we can test different energy transfer pathways and find the most efficient one

Kleiman is the principal investigator in the research featured in a paper set to appear Friday in the journal Science

Her work focuses on molecules known as dendrimers whose many branching units make them good energy absorbers. The amount of energy the synthetic molecules can amass and transfer depends on which path the energy takes as it moves through the molecule. Kleiman and three co-authors are the first to gain control of this process in real time. The team demonstrated that it could use phased tailored laser pulses -- light whose constituent colors travel at different speeds -- to prompt the energy to travel down different paths
"What we see is that we control where the energy goes by encoding different information in the excitation pulses," Kleiman said

Researchers who now test every new molecular structure for its energy storage and transfer efficiency may be able to use what Kleiman called a new spectroscopic tool to quickly identify the most promising structures for photovoltaic devices

"Imagine you want to go from here to Miami, and the road is blocked somewhere," she said. "With this process, we're able to say, 'Don't take that road, follow another one instead

Note: This story has been adapted from a news release issued by the University of Florida

New aluminum-water rocket propellant promising for future space missions (10/11/2009

Researchers are developing a new type of rocket propellant made of a frozen mixture of water and "nanoscale aluminum" powder that is more environmentally friendly than conventional propellants and could be manufactured on the moon, Mars and other water-bearing bodies

The aluminum-ice, or ALICE, propellant might be used to launch rockets into orbit and for long-distance space missions and also to generate hydrogen for fuel cells, said Steven Son, an associate professor of mechanical engineering at Purdue University

Purdue is working with NASA, the Air Force Office of Scientific Research and Pennsylvania State University to develop ALICE, which was used earlier this year to launch a 9-foot-tall rocket. The vehicle reached an altitude of 1,300 feet over Purdue's Scholer farms, about 10 miles from campus

"It's a proof of concept," Son said. "It could be improved and turned into a practical propellant. Theoretically, it also could be manufactured in distant places like the moon or Mars instead of being transported at high cost

Findings from spacecraft indicate the presence of water on Mars and the moon, and water also may exist on asteroids, other moons and bodies in space, said Son, who also has a courtesy appointment as an associate professor of aeronautics and astronautics

The tiny size of the aluminum particles, which have a diameter of about 80 nanometers, or billionths of a meter, is key to the propellant's performance. The nanoparticles combust more rapidly than larger particles and enable better control over the reaction and the rocket's thrust, said Timothée Pourpoint, a research assistant professor in the School of Aeronautics and Astronautics

"It is considered a green propellant, producing essentially hydrogen gas and aluminum oxide," Pourpoint said. "In contrast, each space shuttle flight consumes about 773 tons of the oxidizer ammonium perchlorate in the solid booster rockets. About 230 tons of hydrochloric acid immediately appears in the exhaust from such flights

ALICE provides thrust through a chemical reaction between water and aluminum. As the aluminum ignites, water molecules provide oxygen and hydrogen to fuel the combustion until all of the powder is burned

"ALICE might one day replace some liquid or solid propellants, and, when perfected, might have a higher performance than conventional propellants," Pourpoint said. "It's also extremely safe while frozen because it is difficult to accidentally ignite

The research is helping to train a new generation of engineers to work in academia, industry, for NASA and the military, Son said. More than a dozen undergraduate and graduate students have worked on the project

"It's unusual for students to get this kind of advanced and thorough training - to go from a basic-science concept all the way to a flying vehicle that is ground tested and launched," he said. "This is the whole spectrum

Research findings were detailed in technical papers presented this summer during a conference of the American Institute of Aeronautics and Astronautics. The papers will be published next year in the conference proceedings

Leading work at Penn State are mechanical engineering professor Richard Yetter and assistant professor Grant Risha

The Purdue portion of the research is based at the university's Maurice J. Zucrow Laboratories, where researchers created a special test cell and control room to test the rocket. The rocket's launching site was located on a facility maintained by Purdue's School of Veterinary Medicine

"Having a launching site near campus greatly facilitated this project," Pourpoint said

Other researchers previously have used aluminum particles in propellants, but those propellants usually also contained larger, micron-size particles, whereas the new fuel contained pure nanoparticles

Manufacturers over the past decade have learned how to make higher-quality nano-aluminum particles than was possible in the past. The fuel needs to be frozen for two reasons: It must be solid to remain intact while subjected to the forces of the launch and also to ensure that it does not slowly react before it is used

Initially a paste, the fuel is packed into a cylindrical mold with a metal rod running through the center. After it's frozen, the rod is removed, leaving a cavity running the length of the solid fuel cylinder. A small rocket engine above the fuel is ignited, sending hot gasses into the center hole, causing the ALICE fuel to ignite uniformly

"This is essentially the same basic procedure used in the space shuttle's two solid-fuel rocket boosters," Son said. "An electric match ignites a small motor, which then ignites a bigger motor

Future work will focus on perfecting the fuel and also may explore the possibility of creating a gelled fuel using the nanoparticles. Such a gel would behave like a liquid fuel, making it possible to vary the rate at which the fuel is pumped into the combustion chamber to throttle the motor up and down and increase the vehicle's distance

A gelled fuel also could be mixed with materials containing larger amounts of hydrogen and then used to run hydrogen fuel cells in addition to rocket motors, Son said

Note: This story has been adapted from a news release issued by the Purdue University


New technique to use banana plants in the production of plastic products (9/29/2009

M. McCourt (Process Engineer), M. Kearns (Rotomoulding Manager) and P. Hanna(Process Engineer
Researchers at Queen's University Belfast are pioneering a new technique for the use of banana plants in the production of plastic products

The Polymer Processing Research Centre at Queen's is taking part in a ?1 million study known as the Badana project. The project will develop new procedures to incorporate by-products from banana plantations in the Canary Islands into the production of rotationally moulded plastics. In addition to the environmental benefits, the project will increase the profitability of the plantation owners and help job security for those working in the area

Mark Kearns, Rotational Moulding Manager at the Polymer Processing Research Centre in Queen's School of Mechanical and Aerospace Engineering, said: "Almost 20 per cent of the bananas consumed in Europe are produced in the Canary Islands, with around 10 million banana plants grown annually in Gran Canaria alone

Once the fruit has been harvested, the rest of the banana plant goes to waste. An estimated 25.000 tonnes of this natural fibre is dumped in ravines around the Canaries every year
"The Badana project aims to find a use for these plants. The natural fibres contained within them may be used in the production of rotationally moulded plastics, which are used to make everyday items such as, oil tanks, wheelie bins, water tanks, traffic cones, plastic dolls and many types of boats. The banana plant fibres will be processed, treated and added to a mix of plastic material and sandwiched between two thin layers of pure plastic providing excellent structural properties. The project gives a whole new meaning to 'banana sandwich

"This new technique will have substantial environmental benefits. It will hopefully result in a substantial reduction in the amount of Polyethylene used in the rotational moulding process, ushering in a new and more sustainable era in the production of rotationally moulded plastics. The research and development of this new approach will help create jobs and the banana plantations will ultimately benefit financially from the sale of the remains of millions of harvested banana plants, which would otherwise go to waste

"It is testament to our expertise in rotational moulding, and strong links with several Spanish Universities, that the Polymer Processing Research Centre has been asked to contribute in this groundbreaking project

Note: This story has been adapted from a news release issued by the Queen's University Belfast

Tracing ultra-fine dust (10/6/2009

Fine particle emissions have been the subject of heated debate for years. People who live near industrial plants see the smoke being discharged into the atmosphere and wonder how harmful it is. But visible emissions are not always the most harmful. The highest risk is posed by fine dust particles which can easily penetrate the human organism. These ultra-fine particles are difficult to measure, however, because they are less than 100 nanometers in diameter

Research scientists at the Fraunhofer Institute for Laser Technology ILT in Aachen have developed a technique by which the composition of such particles can be precisely analyzed. "The statutory limit values for fine particle emissions are based on the total particle weight," explains Dr. Cord Fricke-Begemann, project manager at the ILT. "Large particles are, however, much heavier than small ones. Weight measurements do not provide any information on the quantity of ultra-fine particles in the fine dust, but they are often more harmful than the larger

The measurement technique developed by the research scientists consists of two steps. A gas stream separates the particles into size classes before they are collected on filters. Their composition is then examined by means of laser emission spectroscopy. "We are therefore able to identify harmful heavy and transition metals, such as zinc, in the fine dust, and also to ascertain the particle size at which they become particularly enriched," explains Fricke-Begemann. A key aspect of the method is that it delivers the results in less than 20 minutes. What's more, it can work at a high throughput rate and enables measurements to be taken directly on site - e.g. in steel plants. Emission values can be measured and monitored in real time during production thanks to a further development of the technique in which the particles are continuously drawn off via an air tube and analyzed

All industrial plants produce fine dust emissions, and every process leaves behind a characteristic "fingerprint" of the particle composition and size distribution. With their measurement method the scientists can test the air in nearby residential areas and identify where the particles are from. They can also help to develop strategies for reducing emissions from the plants concerned

Note: This story has been adapted from a news release issued by the Fraunhofer-Gesellschaft

Bacterium helps formation of gold (10/10/2009

Australian scientists have found that the bacterium Cupriavidus metallidurans catalyses the biomineralisation of gold by transforming toxic gold compounds to their metallic form using active cellular mechanism

Researchers reported the presence of bacteria on gold surfaces but have never clearly elucidated their role. Now, an international team of scientists has found that there may be a biological reason for the presence of these bacteria on gold grain surfaces. "A number of years ago we discovered that the metal-resistant bacterium Cupriavidus metallidurans occurred on gold grains from two sites in Australia. The sites are 3500 km apart, in southern New South Wales and northern Queensland, so when we found the same organism on grains from both sites we thought we were onto something. It made us wonder why these organisms live in this particular environment. The results of this study point to their involvement in the active detoxification of gold complexes leading to formation of gold biominerals", explains Frank Reith, leader of the research and working at the University of Adelaide (Australia

The experiments showed that C. metallidurans rapidly accumulates toxic gold complexes from a solution prepared in the lab. This process promotes gold toxicity, which pushes the bacterium to induce oxidative stress and metal resistance clusters as well as an as yet uncharacterized gold-specific gene cluster in order to defend its cellular integrity. This leads to active biochemically-mediated reduction of gold complexes to nano-particulate, metallic gold, which may contribute to the growth of gold nuggets
For this study scientists combined synchrotron techniques at the European Synchrotron Radiation Facility (ESRF) and the Advanced Photon Source (APS) and molecular microbial techniques to understand the biomineralisation in bacteria. It is the first time that these techniques have been used in the same study, so Frank Reith brought together a multinational team of experts in both areas for the success of the experiment. The team was made up of scientists from the University of Adelaide, the Commonwealth Scientific and Research Organization (CSIRO), the University of California (US), the University of Western Ontario and the University of Saskatchewan (Canada), Martin-Luther-Universitنt (Germany), University of Nebraska-Lincoln (US), SCK.CEN (Belgium) and the APS (US) and the ESRF (France

This is the first direct evidence that bacteria are actively involved in the cycling of rare and precious metals, such as gold. These results open the doors to the production of biosensors: "The discovery of an Au-specific operon means that we can now start to develop gold-specific biosensors, which will help mineral explorers to find new gold deposits. To achieve this we need to further characterize the gold-specific operon on a genomic as well as proteomic level. If funding for this research is granted I believe we can produce a functioning biosensor within three to five years", concludes Reith

Note: This story has been adapted from a news release issued by the European Synchrotron Radiation Facility

Fill 'er up - with algae (10/10/2009

Imagine filling up your car with fuel that comes from inexpensive algae that grow quickly, don't use up freshwater supplies and can be cultivated in areas where they won't compete with traditional food crops, such as corn or soybeans. Researchers at North Carolina State University are working to make that a reality, with a $2 million grant from the National Science Foundation (NSF

The researchers are studying algae as a fuel source because they grow quickly and can be grown throughout the year, providing the potential to create 100 times as much feedstock per acre as conventional crops, says Dr. Bill Roberts, professor of mechanical and aerospace engineering at NC State and primary investigator of the grant. Roberts explains that algae can also be grown on marginal land, so they would not compete with food crops such as corn or soybeans for arable land. Furthermore, Roberts says the researchers are looking specifically at a type of marine algae called Dunaliella, which grows in brackish or salty water - so cultivating the primitive, tiny plant-like creatures would not compete for valuable freshwater resources. This is especially important for states like North Carolina, where seasonal droughts affect agricultural and urban demand for fresh water

"We're looking at microscopic marine algae that produce fatty acids and do not have a cell wall. We plan to genetically modify the algae so that they will continuously produce these fatty acids, which we can then continually harvest," Roberts says. "We also plan to genetically modify the algae to produce fatty acids of a specific length, to expedite the conversion of the fatty acids into fuels that can be used by our existing transportation infrastructure." Specifically, Roberts says, "the goal is to create fuels that can be used in place of diesel, gasoline and jet fuel - though jet fuel will be the most technically challenging." In other words, they hope to make fuels that are 100 percent compatible with the existing fuels' storage and distribution system and run in existing vehicles - no modifications necessary

And, Roberts stresses, "it has to be cost-competitive, or none of this makes sense. It's easy to be cost-competitive when oil is at $300 a barrel, but it's harder when the price of oil drops. Our goal is to optimize this technology so that it is cost-competitive, renewable, can be produced
domestically and is environmentally friendly
Roberts adds that an additional benefit to using algae as a fuel source is that the algal cultures would be transportable. For example, people in a remote area could set up a system to grow the algae and produce the fuel on-site, rather than shipping the finished product thousands of miles

The first of many parallel steps for the research effort is to mass-culture the best oil-producing strains of Dunaliella, and then to map the Dunaliella genome and identify the genes responsible for regulating the quantities and qualities of the produced fatty acids. Once that has been done, the researchers plan to replace those genes with genes from other organisms to produce the desired fatty acids and overcome the internal regulatory mechanisms that could potentially limit fatty acid production. Next, the necessary technology and protocols to grow the algae and extract the fatty acids will need to be fine-tuned. Simultaneously, the researchers will ascertain which chemical catalysts and operating parameters should be used to optimize the conversion of the fatty acids into the desired fuels. Finally, the various fuels will be tested to ensure that they can be used in place of conventional diesel, gasoline and jet fuels

The $2 million grant is part of the federal stimulus package and comes from NSF's Emerging Frontiers in Research and Innovation program. The funding is spread over four years, with the algae research scheduled for completion in July 2013, and will draw on the expertise of an interdisciplinary team of scientists from NC State. The research team includes Roberts, Dr. JoAnn Burkholder, William Neal Reynolds Professor of plant biology; Dr. Henry Lamb, professor of chemical and biomolecular engineering; Dr. Heike Sederoff, assistant professor of plant biology; Dr. Larry Stikeleather, professor of biological and agricultural engineering; Dr. Amy Grunden, associate professor of microbiology; and Dr. Wendy Boss, William Neal Reynolds Professor of plant biology. The researchers will also be collaborating with NC State Ph.D. student Tim Turner, and industry partners Diversified Energy Corp. and Innova Tech

Note: This story has been adapted from a news release issued by the North Carolina State University