25 August 2010
An aqueous two-phase microdroplet system that isolates and extracts cells could aid research into tissue engineering and regenerative medicine, say UK scientists.
Droplet-based microfluidic systems, using a fluorescence-based detection method have been used to locate, identify and discriminate cells within a specific droplets and more recently two-phase systems have been investigated for their ability to separate different biological materials. Target cells distribute between phases by their own thermal motion to reach equilibrium but so far this has proved a slow process.
Now, Andrew deMello and his team at Imperial College London have devised a novel method to separate cells using microfluidic droplets. The process could enable high throughput cell separation which would be ideal for clinical applications such as cell therapy and regeneration.
A PEG microdroplet completely encases the DEX droplet
In deMello's device, human T lymphoma cells enter the microdroplet system within a dextran solution. At a T-junction in the device, the dextran meets a polyethylene glycol (Peg) inlet where a droplet of Peg completely encapsulates a dextran droplet. These droplets then follow a winding channel in the device that causes both phases to mix - forming an emulsion and allowing the cells to experience the environment of both phases. When the two phases separate back into a double droplet, the cells remain in the outer Peg phase.
Binding the cells with an antibody-N-isopropylacrylamide (Ab-NIPAM) is crucial to the separations explains deMello as this makes them favour the Peg phase. Without the Ab-NIPAM, 98 per cent of the cells remain located within the dextran. But once bound this reverses to 93 per cent moving to the outer Peg droplet.
Shashi Murthy, an expert in microfluidic devices design at Northeastern University in Boston, comments that conventional approaches 'are quite effective, but there's a lot of interest in trying to make them more simple and as microfluidic systems are being proposed as disposable and cheap alternatives to more expensive instrumentation, this is of significant interest.'
The team believe that the technique will be able to separate heterogeneous cell populations in a high-throughput manner. Also, the use of Ab-NIPAM conjugates can be applied to a wide range of other cell systems simply by changing the antibody.
Anna Watson
No comments:
Post a Comment